Research

Lab Notes – Fall 2017

E-Cigarettes Not a Safe Alternative

Using a new low-cost, 3-D-printed testing device, UConn researchers found that e-cigarettes loaded with a nicotine-based liquid are potentially as harmful as unfiltered cigarettes when it comes to causing DNA damage. The researchers also found that vapor from non-nicotine e-cigarettes caused as much potentially cancer-causing DNA damage as filtered cigarettes, possibly due to the many chemical additives present in e-cigarette vapors. Several factors impact the amount of DNA damage e-cigarettes cause, says Karteek Kadimisetty, a postdoctoral researcher in UConn’s chemistry department and the study’s lead author. “I never expected the DNA damage from e-cigarettes to be equal to tobacco cigarettes,” says Kadimisetty. “I ran the controls again. I even diluted the samples. But the trend was still there — something in the e-cigarettes was definitely causing damage to the DNA.” The findings appear in the journal ACS Sensors.

electronic cigarette


New Device Tests Heart Health

finger pricked with a spot of blood (for blood sugar test)

UConn researchers from the Department of Mechanical Engineering have developed a device that can test blood viscosity during a routine office visit. The heart must work harder to pump sticky — high viscosity — blood, and studies have shown thicker blood can indicate cardiac event and stroke risk. UConn associate professor of mechanical engineering George Lykotrafitis and doctoral candidate Kostyantyn Partola have filed a provisional patent on the small electronic device, which requires just a finger prick of blood, gives precise readings in minutes, and costs under $1,000. Currently, physicians must send large blood samples to off-site labs for analysis in a rheometer. “With this information, doctors can suggest simple lifestyle changes on the spot to prevent their patients from having a stroke or heart attack,” says Partola.


The Lack of Black Men in Medicine

Male african-american doctor

Medical school matriculation rates for black males have failed to surpass those from 35 years ago, according to a recent UConn Health analysis of data from the Association of American Medical Colleges. African-American men make up just 2.8 percent of the applicants to medical school. Out of all African-American applicants, only 38 percent are men, and black males who are unsuccessful in their first application are less likely to reapply than their white counterparts, the researchers write in the Journal of Racial and Ethnic Health Disparities. “The absence of Black males in medical school represents an American crisis that threatens efforts to effectively address health disparities and excellence in clinical care,” wrote authors Dr. Cato T. Laurencin and Marsha Murray.


Lifting Spirits Doesn’t Require Many Reps

25KG weight

More physical activity is not necessarily better when it comes to improving your mood, especially if you spend most of your day sitting, UConn and Hartford Hospital researchers found in a recent study. The work, published in the Journal of Health Psychology, found that people who led sedentary lives and engaged in light or moderate activity showed the greatest improvement in overall sense of well-being. Further, the study found no positive or negative association between high-intensity physical activity and subjective well-being, contradicting a widely reported recent study that found high-intensity workouts significantly lowered some people’s sense of well-being.

Follow-Up – Fall 2017

Research doesn’t stop when we report it. Here are updates on past UConn Health Journal stories:


UConn Center on Aging

The UConn Center on Aging is one of 14 planned study sites for the TAME (Targeting Aging with Metformin) clinical trial led by Albert Einstein College of Medicine’s Dr. Nir Barzilai and colleagues from Wake Forest School of Medicine. The researchers hope to test the ability of diabetes drug metformin to slow development of aging-related conditions such as cancer, dementia, and cardiovascular diseases.

the Flu

Spring 2017, “Aches, Age, and Influenza”


Childhood Anxiety Research

Anxiety in children may need to be treated as a chronic condition that requires regular follow-up, reported UConn Health psychologist Golda Ginsburg at this year’s Anxiety and Depression Association of America conference. The results are from a study that followed 488 children and adolescents with anxiety who were randomly assigned to get cognitive behavioral therapy (CBT), an antidepressant, CBT and an antidepressant, or a placebo. Remission rates five years after treatment were the same, no matter the treatment.

Russian nesting dolls illustrating the pattern of anxiety

Winter 2015, “Breaking the Cycle: How Anxious Parents Can Protect Their Kids from Becoming Anxious Adults

Lab Notes – Summer 2017

Melanoma’s Signature

illustration of a melanoma cell

Dangerous melanomas likely to metastasize have a distinctive molecular signature, UConn Health researchers reported in the February issue of Laboratory Investigation. Melanomas are traditionally rated on their thickness; very thin cancers can be surgically excised and require no further treatment, while thick ones are deemed invasive and require additional therapies. But melanomas of intermediate thickness are harder to judge. The researchers measured micro-RNAs produced by melanoma cells and compared them with the micro-RNAs in healthy skin. Micro-RNAs regulate protein expression in cells. The team found that melanomas with the worst outcomes produced lots of micro-RNA21 compared to melanomas of similar thickness with better outcomes. In the future this molecular signature could help dermatologists decide how aggressively to treat borderline melanomas.


Chili Pepper and Marijuana Calm the Gut

The medical benefits of marijuana are much debated, but what about those of chili peppers? It turns out that when eaten, both interact with the same receptor in our stomachs, according to UConn Health research published in the April 24 issue of Proceedings of the National Academy of Sciences. The scientists found feeding mice chili peppers meant less gut inflammation and cured those with Type 1 diabetes. Why? The chemical capsaicin in the peppers bonds to a receptor found in cells throughout the gastrointestinal tract, causing the cells to make anandamide — a compound chemically akin to the cannabinoids in marijuana. The research could lead to new therapies for diabetes and colitis and opens up intriguing questions about the relationship between the immune system, the gut, and the brain.

illustration of chili peppers and marijuana in the gut


Isolating Their Target

brain scan

Brain cells of individuals with Angelman syndrome fail to mature, disrupting the ability of the cells to form proper synaptic connections and causing a cascade of other developmental deficits that result in the rare neurogenetic disorder, according to UConn Health research. Neuroscientist Eric Levine’s team used stem cells derived from Angelman patients to identify the disorder’s underlying neuronal defects, an important step in the ongoing search for potential treatments and a possible cure. Previously, scientists had relied primarily on mouse models that mimic the disorder. The findings were published in the April 24 issue of Nature Communications. While Levine’s team investigates the physiology behind the disorder, UConn developmental geneticist Stormy Chamberlain’s team researches the genetic mechanisms that cause Angelman.


The Cornea’s Blindness Defense

eye

The formation of tumors in the eye can cause blindness. But for some reason our corneas have a natural ability to prevent that from happening. Led by Royce Mohan, UConn Health neuroscientists believe they have found the reason, findings that will be detailed in September’s Journal of Neuroscience Research. They link the tumor resistance to a pair of catalytic enzymes called extracellular signal-regulated kinases 1 and 2. When ERK1/2 are overactivated in a specific type of cell, the “anti-cancer privilege of the cornea’s supportive tissue can be overcome,” says Mohan. That happens in the rare disease neurofibromatosis-1. “These findings may inform research toward developing better strategies for the prevention of corneal neurofibromas,” says Dr. George McKie, cornea program director at the National Eye Institute, which funded the study.

Follow-Up – Summer 2017

Research doesn’t stop when we report it. Here are updates on past UConn Health Journal stories:


Ovarian Cancer Vaccine

UConn Health is recruiting patients for the world’s first personalized genomics-driven ovarian cancer vaccine clinical trial. The FDA-approved trial will test the experimental vaccine Oncoimmune, which was invented by Neag Comprehensive Cancer Center Director Dr. Pramod Srivastava. The vaccine aims to boost the immune response of patients with ovarian cancer to prevent relapse. To learn more, call Quratulain Ali at 860.679.7648.

An iPad displaying 'How much will Robert pay? You'r answer is probably incorrect.' artfully

Spring 2016, “Individualized”


Dr. Cato T. Laurencin

A team led by Dr. Cato T. Laurencin, who in 2016 received a number of prestigious honors including a National Medal of Technology and Innovation, has found a way to regenerate rotator cuff tendons after they’re torn using stem cells and a “nano-mesh” material. Laurencin’s team has also joined the New Hampshire–based Advanced Regenerative Manufacturing Institute to speed the development of human limb growth.

Dr. Cato Laurencin

Spring 2016, “Honors Pour In for Leading UConn Surgeon-Scientist”


Health Disparities Institute

A recent survey conducted by UConn’s Health Disparities Institute found that patients across the state have poor health insurance literacy. The results of a poll of 516 adult Connecticut residents enrolled in a qualified health plan through Access Health CT showed that the surveyed population struggled to understand how to use their benefits as well as understand basic health insurance terminology, including “premium,” “deductible,” and “co-pay.”

illustration of fingerprints overlayed on top of a woman's ovaries

Summer 2016, “Fighting for Equity”


Size Matters for Particles in Bloodstream

UConn Engineering Professor’s Findings Could Mean More Effective Cancer Drugs

UConn researchers used a fluorescence microscope to illuminate a microfluidic device that simulates a blood vessel to observe and measure how particles of different sizes behave in the bloodstream.

UConn researchers used a fluorescence microscope to illuminate a microfluidic device that simulates a blood vessel to observe and measure how particles of different sizes behave in the bloodstream. Their findings could aid the development of more effective cancer drugs. Photo: Anson Ma


A UConn engineering professor has uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs.

Making sure cancer medications reach the leaky blood vessels surrounding most tumor sites is a critical aspect of treatment and drug delivery. While surface chemistry, molecular interactions, and other factors come into play once drug-carrying particles arrive at a tumor, therapeutic medication doesn’t do much good if it never reaches its intended target.

Anson Ma, assistant professor of chemical and biomolecular engineering, used a microfluidic channel device to observe, track, and measure how individual particles behaved in a simulated blood vessel.

Ma says he wanted to learn more about the physics influencing a particle’s behavior as it travels in human blood, and to determine which particle size might be the most effective for delivering drugs to their targets. His experimental findings mark the first time such quantitative data has been gathered. The study appeared in the Oct. 4, 2016 issue of the Biophysical Journal.

Using a fluorescence microscope, Ma was able to see particles moving in the simulated blood vessel in what could be described as a vascular “Running of the Bulls.” Red blood cells race through the middle of the channel as the particles — highlighted under the fluorescent light — get carried along in the rush, bumping and bouncing off the blood cells until they are pushed to open spaces, called the cell-free layer, along the vessel’s walls.

What Ma found was that larger particles — the optimum size appeared to be about 2 microns — were most likely to get pushed closer to the blood vessel wall, where their chances of carrying medication into a tumor site are greatest. The research team also determined that 2 microns was the largest size that should be used if particles are going to have any chance of going through the leaky blood vessel walls into the tumor site.

Knowing how particles behave in our circulatory system should help improve targeted drug delivery, reducing the toxic side effects caused by potent cancer drugs missing their target and impacting the body’s healthy tissue.

“When it comes to using particles for the delivery of cancer drugs, size matters,” Ma says. “When you have a bigger particle, the chance of it bumping into blood cells is much higher, there are a lot more collisions, and they tend to get pushed to the blood vessel walls.”

The results were somewhat surprising. In preparing their hypothesis, the research team estimated that smaller particles were probably the most effective since they would move the most in collisions with blood cells, much like what happens when a small ball bounces off a larger one. But just the opposite proved true. The smaller particles appeared to skirt through the mass of moving blood cells and were less likely to experience the “trampoline” effect and get bounced to the cell-free layer, says Ma.

Ma proposed the study after talking to a UConn pharmaceutical scientist about drug development at a campus event five years ago.

“We had a great conversation about how drugs are made and then I asked, ‘But how can you be sure where the particles go?’” Ma recalls, laughing. “I’m an engineer. That’s how we think. I was curious. This was an engineering question. So I said, ‘Let’s write a proposal!’”

The proposal was funded by the National Science Foundation’s Early-concept Grants for Exploratory Research, or EAGER, program, which supports exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches.

Knowing how particles behave in our circulatory system should help improve targeted drug delivery, Ma says, which in turn will further reduce the toxic side effects caused by potent cancer drugs missing their target and impacting the body’s healthy tissue.

The findings were particularly meaningful for Ma, who lost two of his grandparents to cancer and who has long wanted to contribute to cancer research in a meaningful way as an engineer.

The results may also be beneficial in bioimaging, where scientists and doctors want to keep particles circulating in the bloodstream long enough for imaging to occur. In that case, smaller particles would be better, says Ma.

Moving forward, Ma would like to explore other aspects of particle flow in the circulatory system, including how particles behave when they pass through a constricted area, such as from a blood vessel to a capillary. Capillaries are only about 7 microns in diameter. The average human hair is 100 microns.

“We have all of this complex geometry in our bodies,” says Ma. “Most people just assume there is no impact when a particle moves from a bigger channel to a smaller channel because they haven’t quantified it. Our plan is to do some experiments to look at this more carefully, building on the work that we just published.”

Ventilator-Associated Pneumonia Still a Concern, Study Says

mask holds oxygen mask to face


Contrary to data published by the Centers for Disease Control and Prevention, ventilator-associated pneumonia rates in hospital intensive care units have not declined significantly since 2005, according to a new study out of the UConn School of Medicine.

The study, published in the Journal of the American Medical Association, found that about 10 percent of critically ill patients placed on a ventilator develop ventilator-associated pneumonia (VAP). The finding is based on reviews of charts from hospitals across the country from 2005-2013.

“VAP is not going away; it still affects approximately one in 10 ventilated patients,” says the study’s lead author, Dr. Mark L. Metersky of UConn Health’s Division of Pulmonary and Critical Care Medicine. “Our findings are in stark contrast to the CDC’s report of a marked decline in VAP rates that had some believing it may no longer be an important problem.”

Researchers reviewed data compiled by the Medicare Patient Safety Monitoring System from a representative sampling of 1,856 critically ill Medicare patients, ages 65 and older, who needed two or more days of mechanical ventilation.

While the VAP rates were stable throughout that time, the rates did not correlate with the CDC’s National Healthcare Safety Network reported rates, which suggest declining rates between 2006 and 2012 in both medical and surgical ICUs. The rate of VAP is one of the metrics for patient safety and health care delivery quality that many hospitals are scored on nationally.

VAP is not going away … Our findings are in stark contrast to the CDC’s report of a marked decline in VAP rates that had some believing it may no longer be an important problem.

Patients in need of mechanical ventilation are often the most critically ill in a medical or surgical ICU hospital setting. Research has shown that up to 15 percent of patients who get it may die from VAP.
The study authors examined the prevalence of VAP in patients on a ventilator following a heart attack,
heart failure, pneumonia, or major surgery. These types of patients are at higher risk for developing pneumonia, a bacterial infection, due to the need for a tube extending down their throat and into their lungs to help them breathe.

“We have not beaten this,” says Metersky. “Current hospital interventions that are used in an attempt to prevent VAP are not working. VAP is still a significant issue, and needs more examination into how we survey its occurrence and report it, along with more research into how best to prevent this type of pneumonia in vulnerable patient populations.”

The higher-than-expected VAP rates may be leading patients to experience complications or death from their lung infection or spend more time on a ventilator or in the ICU, slowing recovery. It may also increase use of antibiotics, leading to potential resistance, and increase health care costs due to longer hospital stays.

Metersky collaborated on the study with colleagues at Qualidigm, Harvard Medical School, and Harvard School of Public Health. It was supported by the Agency for Healthcare Research and Quality of the U.S. Department of Health and Human Services.

Lab Notes – Spring 2017

For MRSA, Resistance is Futile

UConn medicinal chemists have designed experimental antibiotics that kill Methicillin-resistant Staphylococcus aureus (MRSA), a common and often deadly bacteria that causes skin, lung, and heart infections. The new antibiotics disable the bacteria’s vitamin B9 enzyme. Without vitamin B9, the bacteria can’t make essential amino acids and they die. Not only do the new antibiotics kill regular MRSA, they also kill types of the bacteria with unusual antibiotic-resistance genes that had never been seen before in the U.S. And that’s no accident: the chemists designed the antibiotics to latch on to the enzyme so cleverly that if it changed enough to elude them, it would no longer be able to do its job with vitamin B9. This could make the new antibiotics resistant to, well, resistance. The research was published in the Dec. 22, 2016 issue of Cell Chemical Biology.

MRSA colonies are shown on a blood agar plate.


State’s Leading Institutions Launch International Effort to Advance Metabolic Research

overweight 3D model running with target on metabolic area

UConn, Yale University, and The Jackson Laboratory (JAX) have partnered with the Weizmann Institute of Science, a prestigious counterpart in Israel, to fill a research void in metabolic diseases that affect billions of people worldwide. The goal of the newly formed Metabolic Research Alliance is to unite the expertise of the institutions on research projects that swiftly move investigations into clinical application and commercialization. The Alliance will employ a novel approach to coordinating existing and new expertise in the areas of immunology, cell biology, microbiota, and the rapidly evolving field of genomics. While investigations will initially focus on obesity and diabetes, the research projects will eventually pursue solutions to additional metabolic diseases.


Innovative Imaging Could Save Sight

Connecticut Innovations has awarded $500,000 to a team of UConn researchers to speed the process to commercialization of the biomarker probe they’re developing to detect a precursor to blindness. The team — led by Royce Mohan, associate professor of neuroscience at UConn Health, and including assistant professor of neuroscience Paola Bargagna-Mohan and UConn School of Pharmacy medicinal chemistry professor Dennis Wright — is developing a fluorescent small molecule imaging reagent to help identify preclinical stages of ocular fibrosis, which is associated with an aggressive form of age-related macular degeneration (AMD) that causes rapid vision loss. AMD is the leading cause of blindness in the U.S. The method would both enable earlier intervention and allow physicians to monitor the progress and effectiveness of interventions before it’s too late.


DOACs Safer Than Warfarin, Study Shows

Patients who suffered blunt traumatic intracranial hemorrhage (ICH) associated with direct oral anticoagulants (DOACs) had significantly lower mortality rates and lower rates of operative intervention compared with a similar group taking warfarin, a study published in the November issue of Trauma and Acute Surgery by researchers from UConn, Saint Francis Hospital and Medical Center, and Trinity College shows. Although DOACs have been an increasingly popular alternative to warfarin for anticoagulation, physicians have worried their use might lead to an increase in patient mortality from uncontrollable bleeding, according to the study. The study, based on data on 162 patients in the St. Francis Trauma Quality Improvement Program database, aimed to help close a gap in research on DOAC safety.

bloodclot in vein

Lab Notes – Fall 2016

‘Morrbid’ RNA Could Be Key to Asthma Treatment

No.2 Pencil eraser erasing a piece of an RNA strand

Researchers have discovered a potential therapeutic target for inflammatory disorders that are characterized by abnormal myeloid cell lifespan, such as asthma, Churg-Strauss syndrome, and hypereosinophilic syndrome. Investigators including Adam Williams of UConn Health and The Jackson Laboratory named the novel long non-coding RNA ‘Morrbid’ (Myeloid RNA Regulator of Bim-Induced Death). They discovered that Morrbid tightly controls how long circulating myeloid cells live — which is key to maintaining the balance between fighting infection and exacerbating inflammation — by overriding a signaling mechanism that prevents premature immune cell death. In mice, deleting the gene helped protect them against inflammation and immunopathology. The findings were published online in Nature, Aug. 15, 2016.


Parents Living Longer is Good News for Offspring, Study Says

Father and young son laugh together and hug

A new study led by the University of Exeter and co-authored by the UConn Center on Aging, among other international contributors, shows that how long a person’s parents live can help predict how long the offspring will live, and how healthy the child will be as he or she ages. The study of 186,000 participants, aged 55 to 73 years and followed for up to eight years, is the largest of its kind. It found that a person’s chance of survival increased by 17 percent for each decade that at least one parent lived beyond age 70, and that those with longer-lived parents had lower rates of heart disease and other circulatory conditions, as well as cancer. The study was published in the Journal of the American College of Cardiology, Aug. 15, 2016.


PRP Limits Ill Effects of Osteoarthritis Treatment

red blood cells

Giving platelet-rich plasma (PRP) to patients undergoing treatment for osteoarthritis may limit the negative effects of the drugs used to manage their symptoms, according to a new study led by Dr. Augustus Mazzocca, director of the UConn Musculoskeletal Institute, and the University of Pittsburgh Medical Center. Osteoarthritis is the most common chronic condition of the joints, causing pain, stiffness, and swelling in approximately 27 million Americans. Powerful anti-inflammatory medicines and local anesthetics relieve pain and improve range of motion, but can also lead to tissue degeneration. In the study, published in the August issue of The American Journal of Sports Medicine, researchers found combining PRP with these treatments significantly reduced their toxic effect on the cells and even improved their proliferation.


Bath Salts 101: Pharmacist Explains Party Drugs

Synthetic party drugs with dangerous hallucinogenic properties, such as those sold commercially as “bath salts,” continue to pose a significant public health risk around the country. C. Michael White — head of the Department of Pharmacy Practice in UConn’s School of Pharmacy — published a comprehensive review of synthetic cathinones in the June 2016 issue of The Journal of Clinical Pharmacology to help clinicians recognize signs of abuse and properly treat patients with adverse events, ranging from psychosis to heart disease, from the drugs. This is the third in a series of articles on drugs including molly/ecstasy and GHB that he wrote to support clinicians. He is currently working on an assessment of synthetic marijuana.

dirty spoon holds 'bath salt' drug

Lab Notes – Summer 2016

Researchers Reveal a Secret of Sepsis

human cell rendering

Severe bacterial infections can push the human body into sepsis, a life-threatening cascade of inflammation and cell death that can be difficult to cure. In the May 19 issue of Cell, immunologist Vijay Rathinam and colleagues at UConn Health proposed an explanation for how bacteria trigger such a dangerous reaction: The human cells aren’t really being invaded. They just think they are, at least when sepsis is caused by gram-negative bacteria. Gram-negative bacteria secrete vesicles of lipopolysaccharides (LPS) that can get inside human cells and set off alarms. When the cell detects the LPS, it thinks a bacterium has slipped past its defenses and self-destructs, spilling inflammatory cytokines that prompt the bacteria to emit more LPS, setting off a vicious cycle.


Nanoparticles: guided missiles for drug delivery

Powerful drugs such as chemotherapy and steroids can be devastatingly effective against their intended targets — but they have a tendency to devastate other, healthy body systems as well. UConn chemist Jessica Rouge is working to make these medications more discriminating in their action by bundling them into guided nanoparticles. Her lab is developing aptamers, molecules that bind to a specific target proteins or cell receptors, that can be attached to the nanoparticles to guide them straight to damaged or diseased cells. This approach could help cancer patients avoid the worst side effects of chemotherapy. It could also be useful for asthmatics who need steroidal anti-inflammatory drugs. With this strategy, the drugs could be sent straight to the lungs, side-stepping side effects completely.


Walnuts May Improve Your Colon Health

a walnut in its shell

Eating walnuts may change gut bacteria in a way that suppresses colon cancer. A team of researchers from UConn Health and The Jackson Laboratory for Genomic Medicine found that mice that ate 7-10.5 percent of their total calories as walnuts (about an ounce per day for humans) developed fewer colon cancers. Walnuts are packed with compounds known to be important nutritionally, but it may be as a whole food that they pack the most significant anti-cancer punch against colon cancer, the third most common cancer in the world. The research, supported in part by the California Walnut Commission and the American Institute for Cancer Research, was published May 23 in the journal Cancer Prevention Research. UConn Health Center for Molecular Medicine cancer researcher Dan Rosenberg and colleagues are now working on a long-term study in humans.


Congestive Heart Failure plus Type 2 Diabetes Worse Than We Knew

Diabetes blood Sugar monitor and test strip

Data from more than 5,300 patients with Type 2 diabetes has shown that these patients face a one-in-four chance of dying within 18 months of being hospitalized for congestive heart failure, according to the global EXAMINE study, led by UConn Health professor of medicine Dr. William B. White. Patients with Type 2 diabetes have two to three times the heart disease risk of the general population. White hopes the results inspire patients and doctors to focus more on preventing cardiovascular disease. The findings were presented June 11 at the American Diabetes Association’s (ADA) annual meeting in New Orleans and published online in the ADA journal Diabetes Care.

Lab Notes – Spring 2016

Studying Dirty Diapers for Clues About Premature Babies

A team of UConn researchers is working on minimizing stress for premature babies by analyzing one of the most extensive sources of information these patients provide: poop. Fully one in nine babies born in the U.S. arrives prematurely, and the measures necessary to keep them alive are numerous, often painful, and may have long-term effects, including lower IQs and neurodevelopmental challenges. In an ongoing study by nursing professor Xiaomei Cong and microbiologist Joerg Graf, preemies’ fecal samples are collected to study each patient’s microbiome. The researchers chart the patterns in the gut microbiome and compare them to the babies’ daily procedures, medications, feeding, and parental contact, looking for correlations between microbiome dynamics and babies’ outcomes.


Researchers Pinpoint Bone Disease-causing Gene

Fragile bones are usually an old person’s affliction, but sometimes children are born with them. Hajdu-Cheney is a particularly terrible form of inherited bone disease, in which sufferers’ bones begin to soften and fracture early, often in childhood. Now, a team of researchers led by Dr. Ernesto Canalis, director of the Center for Skeletal Research at UConn Health, has shown in mice that a specific gene can cause the disease. Overabundant bone-absorbing cells may be causing the characteristic bone loss, the researchers reported in the Jan. 22 issue of The Journal of Biological Chemistry. The researchers hope to find a potential treatment, perhaps by slowing the development or activity of the cells that absorb old bone.


Researchers up one in antibacterial cat-and-mouse game

UConn pathobiologists have discovered that vibrio bacteria have a special protein that sounds the alarm when it detects antibiotics in the beta-lactams family, such as penicillins and cephalosporins. The protein, called histidine kinase, alerts the bacteria to produce an antibiotic-fighting enzyme called beta-lactamase. The researchers reported their discovery in the Feb. 1 edition of Proceedings of the National Academy of Sciences. They don’t yet know the mechanism for how the protein senses antibiotics, but now that they know it exists, they will work on a way to disable it by developing drugs that can desensitize the bacteria — so that they don’t respond to the alarm.


Diagnose sickle cell disease with your phone

A few drops of blood inserted into a tube on a smartphone could be all that’s necessary to diagnose sickle cell disease, UConn biomedical engineers reported in Scientific Reports on Oct. 22. A hereditary disease, sickle cell affects people across Africa and the U.S. If undiagnosed, it can cause silent strokes and life-long damage, but current techniques for screening newborns are cumbersome and require specialized training. UConn’s Stephanie Knowlton and Savas Tasoglu, working with colleagues at Yale, MIT, and Harvard, have invented a sickle cell testing device that can be plugged into an Android phone and easily interpreted by a non-specialist. They’re now working on expanding the device to work for other diseases.

A device to analyze blood for sickle cell disease