Dr. Ketan Bulsara

UConn Health First Hospital in U.S. with Augmented Reality Surgical Microscope

Dr. Ketan Bulsara and Dr. Daniel Roberts use the new augmented reality microscope

Dr. Ketan Bulsara and Dr. Daniel Roberts use the new augmented reality microscope in the hybrid OR at UConn John Dempsey Hospital.


UConn Health is the first hospital in the nation to acquire a high-tech surgical microscope with augmented reality capabilities to visually assist surgeons during complex neurological and spinal surgeries. This technology — the latest added to UConn Health’s state-of-the-art hybrid operating room — provides surgeons with an enhanced 3D visualization of the surgical field at the highest magnification possible. It can also illuminate the blood flow through various brain tissues, making more precise surgical interventions possible.

“The advanced augmented reality, image-guided microscope allows us to go beyond what we can normally see with our naked eye and traditional microscopes. It allows practitioners from multiple surgical specialties to treat even more complex lesions more safely,” says Dr. Ketan Bulsara, chief of the Division of Neurosurgery at UConn Health.

The microscope’s unique FusionOptics technology allows a surgeon to see greater anatomical detail with increased sharpness, such as the tiny distances between the smallest blood vessels and nerve structures, without needing to refocus the microscope. It also has the ability to brightly light up tiny blood vessels in the brain to distinguish them from other surrounding brain tissue, helping surgeons navigate the complex and delicate surgical field.

The microscope also includes a video camera that allows surgeons to choose one of three enhanced overlays to amplify the view of the surgical field. The three views are a real-time, highly magnified naked anatomy; a black-and-white, fluorescence-enhanced view to see greater tissue dimensions and blood flow; and a brightly colored, fluorescence-enhanced view of naturally colored anatomy to see the intricate blood flow and tissue outlines during a microsurgical procedure.

The ARveo Augmented Reality microscope is made by Leica Microsystems, a developer and manufacturer of microscopes and scientific instruments for the analysis of microstructures and nanostructures.

Curators Versus Cancer

By Kim Krieger | Illustrations by Kailey Whitman

illustration of scientist look over hundreds of books

A special team of medical literature experts are on the hunt for cancer’s kryptonite, one mutation at a time.


If the genetic code is like a book, then a mutation is like a typo. Some typos are meaningless. Others have such dramatic consequences for a book, or a life, that the error alone could have an entire novel written about it.

Cancer mutations are like that. As oncology moves toward precision medicine — the idea that if we knew exactly which genetic mutations make a particular cancer tick, we could pick exactly the right treatments — oncologists have to keep up with an ever-expanding library of mutations and the drugs that might foil them. The number of cancer research papers published increases every year; there were about 35,000 published in 2015 just in the U.S. It’s far more than any one person can keep up with.

In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published.

A new collaboration between UConn Health and The Jackson Laboratory (JAX) hopes to help oncologists find the right treatments by keeping up with research for them — and using the institutions’ combined expertise in cancer treatment, molecular biology, and genetics to improve patient outcomes for cancers that currently don’t have good treatments. In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published. JAX already successfully connects these experts with doctors in the Maine Cancer Genomics Initiative, a philanthropy-funded statewide precision medicine program. UConn Health and JAX hope to expand the concept and demonstrate its feasibility more widely.

A UConn Health researcher holds a tumor sample.

A UConn Health researcher holds a tumor sample. Kristin Wallace

Bull’s Eye Treatment

Imagine that a patient has surgery or a needle biopsy to diagnose a tumor. It’s a particularly ugly tumor, the surgeon, oncologist, and pathologist all agree. Invasive, spreading, and perhaps this isn’t the first time this patient has had to come in for cancer surgery. The tumor is sampled and sent for genetic testing. In about two weeks, the results come back: there are three genetic variants in the tumor that might be drug targets.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor. “The goal is to define the optimal treatment regimen for each individual patient” who may not have good options otherwise, says Dr. Ketan R. Bulsara, chief of neurosurgery at UConn Health and one of the principal investigators on the project.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor.

The report is intended to be a standalone reference an oncologist can use to inform a treatment plan. But if the oncologist is unfamiliar with one of the mutations identified in the report or just wants more information, they can request that a genomic tumor board be convened. The board is composed of surgeons, pathologists, and molecular oncologists who act as external advisors, sharing their opinions with the oncologist. In just 15 minutes, the oncologist can get a wealth of expert opinion to combine with their own expertise and judgment. In the end, the oncologist and patient decide on the best treatment, based on all the available information.

“In a multidisciplinary fashion, doctors and scientists work hand in hand in this with one common goal: identify the best treatment regimen for that particular patient’s pathology,” Bulsara says.
The focus is always on the patient. But behind the scenes, there’s an entire team of researchers whose work goes into the genetic tumor report. Scientists at JAX Clinical Laboratory sequence the tumor’s genetic code and report information on more than 200 cancer-related genes. The genes were picked because they are associated with both malignancy and potential drug treatments. Any mutations or variants in these genes might be a clue to the cancer’s weakness. Or a red herring.

“A typical tumor might have 2,000 mutations. Not all of them really matter,” says Andrey Antov, the program director for the Maine Cancer Genome Initiative at JAX. Finding the key mutations that matter, the two or ten or twenty that could possibly inform treatment and a better outcome for the patient, is the job of the clinical genomic curators.

Personal Librarians

The clinical genomic curators are specialists in fields such as molecular oncology and oncological pharmacology. They’re dedicated to keeping up with the literature on cancer genes and the drugs that target them. More and more of these drug-gene connections are being discovered every day. It’s exciting, but the sheer volume of papers can be overwhelming. Navigating that ocean of scientific papers is the medical curators’ full-time job. They’re like librarians curating a Boston Public Library–size collection of genes and drugs with no cross references in the card catalog and only an imperfect search function. The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

Each mutation identified by the genetic panel might require 10 to 20 scientific publications to understand. Once the curators have a handle on the variants’ significance, the clinical laboratory decides which two or three should be described in the report to the oncologist.

illustration of books in a library cart

Sifting the information down to something relevant and digestible is the ultimate goal.

“Today, all this information is disorganized and may not all be in the oncologist’s head. We’re trying to bring it together,” says Jens Rueter, medical director for the Maine Cancer Genome Initiative.

The ideal outcome of a tumor genetic analysis would be to identify a mutation such as the HER2 gene that is turned on in the most aggressive breast cancers. HER2 is responsible for the cancer’s malignancy. But it’s also the cancer’s Achilles’ heel. Once drugs were developed to block the HER2 protein, survival rates climbed sharply.

The goal of the Maine Cancer Genomics Initiative is to enable oncologists to identify other drug-gene connections as potent as the ones found for HER2. Although more and more of these drug-gene connections are being discovered, it remains difficult to provide a patient with access to these drugs. Many of them are only available if a patient participates in a clinical trial. And often, there are barriers to accessing clinical trials, and getting drugs off-label is the only way to get patients to treatments. That’s another benefit that Antov, Bulsara, and Rueter hope UConn Health’s collaboration with JAX will bring.

Positive Outcomes

Ultimately, the researchers hope to demonstrate that this approach leads to better outcomes for patients. During the past year more than 350 patients and 70 oncology practitioners (more than 80 percent of the Maine oncology community) enrolled in the Maine Cancer Genomics Initiative study protocol. A few patients have already been offered a targeted treatment through a trial or a compassionate drug access program as a result of enrollment in the program. And Maine health care professionals have logged more than 1,200 certified education hours through 35 genomic tumor boards, online modules, and annual forums held by JAX.

So far, five patients have done this at UConn Health within the last two months. Generous donors have given enough to fund 20 more.

The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

“We hope to get funding for at least 100 patients to show the feasibility of this approach,” Bulsara says. “We want to show we can do this reliably, and that it reliably improves patient care.”

UConn Health already has the infrastructure to do this, in particular a biorepository for tumors set up by Neag Cancer Center Director Dr. Pramod Srivastava and pathologist Dr. Melinda Sanders. With that foundation and support from UConn medical school Dean Dr. Bruce Liang and UConn Health CEO Dr. Andrew Agwunobi, the program was piloted in the Department of Surgery by Bulsara, its chief of neurosurgery, with support from Department of Surgery Chairman Dr. David McFadden, hematology and oncology chief Dr. Susan Tannenbaum, anatomical pathology chief Dr. Qian Wu, and JAX Clinical Laboratory Director Honey Reddi.

If the UConn Health–JAX initiative does prove its feasibility, the approach will continue to spread and become a standard of care.

More oncologists could have access to the library of knowledge and advice of a genetic tumor board, and more cancer patients could benefit from longer, healthier lives.

Tumor samples are housed in UConn Health's research biorepository.

Tumor samples are housed in UConn Health’s research biorepository. Kristin Wallace

Hybrid OR Expands Surgical Capabilities


This spring, neurosurgery chief Dr. Ketan Bulsara and his team were the first to perform surgery in UConn John Dempsey Hospital’s 1,200-square-foot hybrid operating room.

The team leveraged the new high-tech room and its dual advanced X-ray imaging capabilities to guide a successful minimally invasive neurological procedure.

“There are not many biplane hybrid operating rooms in the United States, and there are only a handful along the East Coast,” says Bulsara. “The biplane imaging provides surgeons multiple views and not only makes patient care safer but also allows surgeons to do things that we could not ordinarily do inside the operating room.”

The hybrid room gives surgeons the ability to perform a range of procedures in one setting, from minimally invasive treatments to the most complex neurosurgery, interventional cardiology, and vascular procedures.

“The hybrid operating room allows surgeons to choose what they feel is the best treatment for that patient,” says Bulsara.

According to Bulsara, the hybrid room enables UConn Health to continue providing world-class care to its patients while shaping the future of surgery and medicine and optimizing the personalized care given to each individual patient.

The hybrid operating room is a new tool for us that allows us to deliver health care in ways we have never been able to before.

UConn Health’s Dr. Stephen Lahey, chief of the Department of Cardiothoracic Surgery, says he couldn’t agree more.

“The hybrid operating room enables us to deliver health care in ways we have never been able to before,” says Lahey. “We now have all the advanced radiological equipment inside a huge operating room.”

All the high-tech equipment in the hybrid OR hangs from the ceiling, including imaging equipment, large plasma screens, and LED boom lights that assist surgeons with brighter and sharper lighting of the surgical field. A high-resolution video system provides real-time video and photo imaging during surgery for direct communication with the Department of Pathology or teleconferencing and live broadcasts of surgery for physician training and medical education.

3-D Printed Model Allows Brain Surgeons to Rehearse

by Kim Krieger

Dr. Charan K. Singh, right, threads a catheter through a 3-D printed model of arteries in the brain while speaking with Dr. Clifford Yang, one of the  model's creators, at UConn Health.

Dr. Charan K. Singh, right, threads a catheter through a 3-D printed model of arteries in the brain while speaking with Dr. Clifford Yang, one of the model’s creators, at UConn Health. Peter Morenus


The first time a young surgeon threads a wire through a stroke victim’s chest, up through the neck, and fishes a blood clot out of the brain may be one of the most harrowing moments in their career. Now, a UConn Health radiologist and a medical physicist have made it easier for them to get some practice first. The team made a life-size model of the arteries that wire must pass through, using brain scans and a 3-D printer. They will make the pattern freely available to any doctor who requests it.

Five years ago, the Food and Drug Administration (FDA) approved mechanical thrombectomy — using a wire to pull clots out of the brains of stroke victims. A trap at the end of the wire opens like a little snare that captures the clot, which is then dragged out of the patient.

After a couple months of tweaking, a UConn Health radiologist and a medical physicist found they could print a true-to-life teaching model of the brain’s major arteries for about $14.

A lot can go wrong on that journey. One of the most dangerous complications is also one of the most likely: another clot can be accidentally knocked loose from the walls of the arteries and get stuck in the heart, the lungs, or elsewhere in the brain. Computer simulations of the procedure exist, but they are prohibitively expensive for many medical schools to purchase. Yet interventional radiologists and neurosurgeons need to train extensively before they work on a real person.

UConn Health cardiac radiologist Dr. Clifford Yang and medical physicist intern David Brotman knew they could help young doctors feel more comfortable with the mechanics.


Because of the prohibitive costs of computer simulation programs, often the first time a surgeon threads a wire into a stroke victim’s brain to remove a blood clot is during the doctor’s first surgery. Using brain scans and a 3-D printer, a UConn team made a life-size model of the arteries surgeons must navigate during the procedure so they can practice first. The pattern is available for free to any doctor who requests it.


“What matters is the ability of the doctor to be confident in guiding the wire,” says Brotman. He and Yang found a brain scan of a patient with typical blood vessel structure and used the scan to design a 3-D model of the blood vessels. Finding a good scan was easy: UConn has an immense library of scans from computed tomography (CT) and magnetic resonance imaging (MRI) of patients. The tough part was converting the data into something a 3-D printer could interpret. Brotman and Yang found and modified publicly available software to do that, and after a couple months of tweaking, they found they could print a true-to-life teaching model of the brain’s major arteries for about $14.

Technically called a brain perfusion phantom, the model is surprisingly delicate. Holding it in your hand brings home just how small the arteries are, even in an adult man. The top arch of the aorta in the chest, big enough to slide an adult’s pinky finger through, connects to the carotid in the neck and then on to the Circle of Willis in the brain, which is no thicker than a fat piece of yarn. The circle has six branches. Each branch supplies blood to one-sixth of the brain. It is in these branches that clots are most likely to get stuck and cause serious damage.

“We are using this model to teach students,” says UConn interventional radiologist Dr. Charan Singh. “Obviously, it won’t feel like the human body. But it will improve their knowledge of anatomy and give them basic technique on how to move the catheter.”

What matters is the ability of the doctor to be confident in guiding the wire.

Singh demonstrates how a slight twist can violently flip the catheter, which is dangerous. It could knock off new clots into the bloodstream. The model isn’t perfect — there are several different ways a person’s aorta can be shaped, and the other veins can vary too. But students can get good practice with it, Singh says.

Dr. Ketan Bulsara, UConn’s chief of neurosurgery, also likes the technology. He cautions that individual anatomy varies too much for it to be used as the only training tool to learn mechanical thrombectomy, but says that it could potentially be used to visualize other conditions, such as brain tumors. Surgery for brain tumors has significant lead time, and modeling the tumor in advance could personalize and improve patient care.

“Creating these high-level 3-D models customized for individual patients has the potential to significantly improve outcomes and reduce operative times by enhancing surgical planning,” Bulsara says.

New Epilepsy Monitoring Technology Tailors Patient Care

by Lauren Woods

Research At The Birkbeck Babylab Into Brain And Cognitive Development LONDON, ENGLAND - MARCH 03: Research assistant Katarina Begus, prepares a 'Geodesic Sensor Net' for an electroencephalogram (EEG) experiment at the 'Birkbeck Babylab' Centre for Brain and Cognitive Development, on March 3, 2014 in London, England. Researchers at the Babylab, which is part of Birkbeck, University of London, study brain and cognitive development in infants from birth through childhood. The scientists use various experiments, often based on simple games, and test the babies' physical or cognitive responses with sensors including: eye-tracking, brain activation and motion capture. (Photo by Oli Scarff/Getty Images)

The new epilepsy unit will feature a high-density geodesic EEG with more than 250 sensors in a cap like the one pictured. Oli Scarff/Getty Images


UConn Health is now home to a high-tech Epilepsy Monitoring Unit.

Located on the first floor of the new tower at UConn John Dempsey Hospital, the unit has two large patient rooms with state-of-the-art technology; 24-hour video observation capabilities; the latest in advanced electroencephalography (EEG) monitoring; and a dedicated team of neurology and neurosurgery doctors, nurses, and staff.

If needed, patients can be monitored for up to several days so doctors can determine whether the seizures are caused by epilepsy, what kind of seizures they are, and where they originate, says Dr. L. John Greenfield, chair of the Department of Neurology at UConn Health and a nationally-recognized epilepsy specialist. The monitoring information is critical to figuring out the best way to halt the seizures.

For patients with epileptic seizures, the information gathered helps doctors create a personalized clinical care plan and choose the most appropriate medications or adjustments for the patient’s seizure type.

For patients who may need surgical intervention to control their seizures, the new unit will allow doctors to precisely localize where the seizures start in the brain to see if neurosurgery might be a beneficial treatment option. According to Greenfield, if the seizure starts in the temporal lobe, there is a 70 to 80 percent chance the seizures can be cured with brain surgery.

Greenfield hopes the data and insights gained from the new unit’s video and EEG monitoring will advance future brain research and clinical care for epilepsy patients. The new unit will soon offer high-density geodesic EEG recordings that can sample patient brain wave data using more than 250 electrode sensors contained in a wearable, stretchy web that fits over the head like a swim cap. This device can pinpoint epileptic activity with much higher precision than traditional EEGs, which record signals using only 19 electrodes.

“With the combination of our state-of-the-art monitoring unit, clinical care, research, and our new chief of neurosurgery, Dr. Ketan Bulsara, UConn Health can now provide comprehensive care for patients with epilepsy and with seizures due to brain tumors or vascular malformations,” saya Greenfield. Bulsara specializes in skull base, endovascular, and tumor neurosurgery.