JAX

Curators Versus Cancer

By Kim Krieger | Illustrations by Kailey Whitman

illustration of scientist look over hundreds of books

A special team of medical literature experts are on the hunt for cancer’s kryptonite, one mutation at a time.


If the genetic code is like a book, then a mutation is like a typo. Some typos are meaningless. Others have such dramatic consequences for a book, or a life, that the error alone could have an entire novel written about it.

Cancer mutations are like that. As oncology moves toward precision medicine — the idea that if we knew exactly which genetic mutations make a particular cancer tick, we could pick exactly the right treatments — oncologists have to keep up with an ever-expanding library of mutations and the drugs that might foil them. The number of cancer research papers published increases every year; there were about 35,000 published in 2015 just in the U.S. It’s far more than any one person can keep up with.

In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published.

A new collaboration between UConn Health and The Jackson Laboratory (JAX) hopes to help oncologists find the right treatments by keeping up with research for them — and using the institutions’ combined expertise in cancer treatment, molecular biology, and genetics to improve patient outcomes for cancers that currently don’t have good treatments. In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published. JAX already successfully connects these experts with doctors in the Maine Cancer Genomics Initiative, a philanthropy-funded statewide precision medicine program. UConn Health and JAX hope to expand the concept and demonstrate its feasibility more widely.

A UConn Health researcher holds a tumor sample.

A UConn Health researcher holds a tumor sample. Kristin Wallace

Bull’s Eye Treatment

Imagine that a patient has surgery or a needle biopsy to diagnose a tumor. It’s a particularly ugly tumor, the surgeon, oncologist, and pathologist all agree. Invasive, spreading, and perhaps this isn’t the first time this patient has had to come in for cancer surgery. The tumor is sampled and sent for genetic testing. In about two weeks, the results come back: there are three genetic variants in the tumor that might be drug targets.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor. “The goal is to define the optimal treatment regimen for each individual patient” who may not have good options otherwise, says Dr. Ketan R. Bulsara, chief of neurosurgery at UConn Health and one of the principal investigators on the project.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor.

The report is intended to be a standalone reference an oncologist can use to inform a treatment plan. But if the oncologist is unfamiliar with one of the mutations identified in the report or just wants more information, they can request that a genomic tumor board be convened. The board is composed of surgeons, pathologists, and molecular oncologists who act as external advisors, sharing their opinions with the oncologist. In just 15 minutes, the oncologist can get a wealth of expert opinion to combine with their own expertise and judgment. In the end, the oncologist and patient decide on the best treatment, based on all the available information.

“In a multidisciplinary fashion, doctors and scientists work hand in hand in this with one common goal: identify the best treatment regimen for that particular patient’s pathology,” Bulsara says.
The focus is always on the patient. But behind the scenes, there’s an entire team of researchers whose work goes into the genetic tumor report. Scientists at JAX Clinical Laboratory sequence the tumor’s genetic code and report information on more than 200 cancer-related genes. The genes were picked because they are associated with both malignancy and potential drug treatments. Any mutations or variants in these genes might be a clue to the cancer’s weakness. Or a red herring.

“A typical tumor might have 2,000 mutations. Not all of them really matter,” says Andrey Antov, the program director for the Maine Cancer Genome Initiative at JAX. Finding the key mutations that matter, the two or ten or twenty that could possibly inform treatment and a better outcome for the patient, is the job of the clinical genomic curators.

Personal Librarians

The clinical genomic curators are specialists in fields such as molecular oncology and oncological pharmacology. They’re dedicated to keeping up with the literature on cancer genes and the drugs that target them. More and more of these drug-gene connections are being discovered every day. It’s exciting, but the sheer volume of papers can be overwhelming. Navigating that ocean of scientific papers is the medical curators’ full-time job. They’re like librarians curating a Boston Public Library–size collection of genes and drugs with no cross references in the card catalog and only an imperfect search function. The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

Each mutation identified by the genetic panel might require 10 to 20 scientific publications to understand. Once the curators have a handle on the variants’ significance, the clinical laboratory decides which two or three should be described in the report to the oncologist.

illustration of books in a library cart

Sifting the information down to something relevant and digestible is the ultimate goal.

“Today, all this information is disorganized and may not all be in the oncologist’s head. We’re trying to bring it together,” says Jens Rueter, medical director for the Maine Cancer Genome Initiative.

The ideal outcome of a tumor genetic analysis would be to identify a mutation such as the HER2 gene that is turned on in the most aggressive breast cancers. HER2 is responsible for the cancer’s malignancy. But it’s also the cancer’s Achilles’ heel. Once drugs were developed to block the HER2 protein, survival rates climbed sharply.

The goal of the Maine Cancer Genomics Initiative is to enable oncologists to identify other drug-gene connections as potent as the ones found for HER2. Although more and more of these drug-gene connections are being discovered, it remains difficult to provide a patient with access to these drugs. Many of them are only available if a patient participates in a clinical trial. And often, there are barriers to accessing clinical trials, and getting drugs off-label is the only way to get patients to treatments. That’s another benefit that Antov, Bulsara, and Rueter hope UConn Health’s collaboration with JAX will bring.

Positive Outcomes

Ultimately, the researchers hope to demonstrate that this approach leads to better outcomes for patients. During the past year more than 350 patients and 70 oncology practitioners (more than 80 percent of the Maine oncology community) enrolled in the Maine Cancer Genomics Initiative study protocol. A few patients have already been offered a targeted treatment through a trial or a compassionate drug access program as a result of enrollment in the program. And Maine health care professionals have logged more than 1,200 certified education hours through 35 genomic tumor boards, online modules, and annual forums held by JAX.

So far, five patients have done this at UConn Health within the last two months. Generous donors have given enough to fund 20 more.

The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

“We hope to get funding for at least 100 patients to show the feasibility of this approach,” Bulsara says. “We want to show we can do this reliably, and that it reliably improves patient care.”

UConn Health already has the infrastructure to do this, in particular a biorepository for tumors set up by Neag Cancer Center Director Dr. Pramod Srivastava and pathologist Dr. Melinda Sanders. With that foundation and support from UConn medical school Dean Dr. Bruce Liang and UConn Health CEO Dr. Andrew Agwunobi, the program was piloted in the Department of Surgery by Bulsara, its chief of neurosurgery, with support from Department of Surgery Chairman Dr. David McFadden, hematology and oncology chief Dr. Susan Tannenbaum, anatomical pathology chief Dr. Qian Wu, and JAX Clinical Laboratory Director Honey Reddi.

If the UConn Health–JAX initiative does prove its feasibility, the approach will continue to spread and become a standard of care.

More oncologists could have access to the library of knowledge and advice of a genetic tumor board, and more cancer patients could benefit from longer, healthier lives.

Tumor samples are housed in UConn Health's research biorepository.

Tumor samples are housed in UConn Health’s research biorepository. Kristin Wallace

Tell-Tale Heart

‘Heart-In-A-Dish’ Sheds Light on Heart Disease Genetics

By Nicole Davis for The Jackson Laboratory for Genomic Medicine
Photography by Peter Morenus

Dr. Travis Hinson holds petri dishes containing beating heart tissue

Dr. J. Travis Hinson is seen holding petri dishes that contain heart cells. Hinson, a joint faculty appointment at UConn Health and The Jackson Laboratory for Genomic Medicine, has pioneered a system to study the genetics of heart failure by recreating beating heart tissue using patients’ stem cells. Photo: Peter Morenus


When a patient shows symptoms of cancer, a biopsy is taken. Scientists study the tissue, examining it under a microscope to determine exactly what’s going on.

But the same can’t be done for heart disease, the leading cause of death among Americans. Until now.

Dr. J. Travis Hinson, a physician-scientist who joined the faculties of UConn Health and The Jackson Laboratory for Genomic Medicine (JAX) in January, uses a novel system he pioneered to study heart tissue.

Hinson engineers heart-like structures with cells containing specific genetic mutations in order to study the genetics of cardiomyopathies, the diseases of the heart muscle that can lead to heart failure and, ultimately, death.

“We basically try to rebuild a little piece of a patient’s heart in a dish,” says Hinson, who developed the technique during his postdoctoral fellowship.
He combines cardiac muscle cells with support cells, such as fibroblasts, and other key factors, including extracellular matrix proteins. Although these tiny, three-dimensional structures do not pump blood, they do contract rhythmically, and their beating strength can be studied.

Making a Difference

Hinson is applauded for his ability to move seamlessly between research, clinical practice, and teaching — the three prongs of an academic medical center’s mission. He’s able to do so, perhaps, because his own career began at the intersection of multiple scientific specialties.

As a University of Pennsylvania undergraduate, Hinson interned at DuPont in New Jersey to explore interests in chemistry and engineering. But he soon realized his passion for science needed a real-word focus. “I wanted to do science that made a difference in people’s health,” he says.

The same summer, he volunteered in the emergency department of a local hospital. Impressed by a cardiologist’s calm and collected manner in a crisis, and gaining interest in the heart, Hinson changed his career trajectory from engineering to medical school.

Hinson and his colleagues can isolate skin or blood cells directly from cardiomyopathy patients and coax them to form heart muscle cells, making it possible to study the biological effects of patients’ own mutations.

Hinson joined the laboratory of Dr. Robert J. Levy, a pediatric cardiologist and researcher at The Children’s Hospital of Philadelphia, working to harness gene therapy techniques to make artificial heart valves and other cardiovascular devices more durable. Through this early foray into biomedical research, Hinson deepened his interest in biomedical science and gained an appreciation of the work of a physician-scientist.

In Dr. Christine Seidman’s lab at Harvard Medical School, Hinson chose to lead a project on Björnstad syndrome, a rare, inherited syndrome characterized by hearing loss and twisted, brittle hair. At the time, little was known about the molecular causes of the disorder, although the genetic culprits were thought to reside within a large swath of chromosome 2. Using genetic mapping techniques and DNA sequencing, Hinson homed in on the precise mutations.

In addition to casting light on disease biology, he glimpsed the power of genomic information. “I was fascinated by the potential for understanding new genes that cause human diseases, and how important that was to society,” Hinson says.

Matters of the Heart

Throughout his medical training, Hinson noticed there were some significant stumbling blocks to gathering a deep knowledge of heart disease, particularly cardiomyopathies.

Cardiac muscle has essentially two paths toward dysfunction and ultimate failure. It can either dilate — become abnormally large and distended — or it can thicken. Both routes severely impair how well the heart performs as a pump. These conditions, known as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), can stem from pre-existing disorders of the heart, such as a previous heart attack or long-standing hypertension, or from DNA mutations.

Fueled by advances in genomics over the last two decades, more than 40 genes have been identified that underlie cardiomyopathy. But unlike diseases such as cystic fibrosis or sickle cell anemia, where it is fairly common for affected individuals from different families to carry the exact same genetic typo, it is exceedingly rare for unrelated patients with cardiomyopathy to share the same mutation. With such a complex genetic architecture, figuring out how the different genes and gene mutations contribute to heart disease has been an enormous challenge.


Dr. Travis Hinson speaks with others in his lab

Above: Dr. J. Travis Hinson gives a tour of his laboratory. Photo: Peter Morenus


Because of this formidable hurdle, drug discovery for the cardiomyopathies has languished. “There really has not been a paradigm-shifting drug developed for heart failure in the last 20 years,” says Hinson. Moreover, the few treatments that do exist are primarily aimed at controlling patients’ symptoms, not slowing or halting their disease.

Hinson aims to improve this picture. With his “heart-in-a-dish” technique, he and his team are now unraveling the effects of genetic mutations on cardiac biology.

The system harnesses multiple recent advances in both stem cell and genome editing technologies. With these capabilities, Hinson and his colleagues can isolate skin or blood cells directly from cardiomyopathy patients and coax them to form heart muscle cells, making it possible to study the biological effects of patients’ own mutations. Moreover, he can correct those mutations, or create additional ones, to further probe how genetic differences influence heart biology.

Part of the allure of Hinson’s approach is that it can be readily applied to study other forms of heart disease. It can also be leveraged for drug discovery, providing a platform to screen and test compounds with therapeutic potential in a wide range of cardiovascular diseases.

In addition to his research lab based at JAX, Hinson continues to practice cardiology at UConn Health. He helps run a specialized clinic focused on genetic forms of heart disease, as well as arrhythmias, connective tissue disorders, and other conditions.

“We have an exciting opportunity to provide clinical services in cardiac genetics in the corridor between New York and Boston,” he says. That means state-of-the-art genetic testing, including gene panels and genome sequencing, as well as genetic counseling for both patients and family members to help inform disease diagnosis and guide treatment. Although there are only a handful of treatments now available, Hinson believes this clinic will be uniquely poised to take advantage of a new generation of personalized treatments that are precisely tailored to patients’ specific gene mutations.

“Travis really is a quintessential physician-scientist,” says Dr. Bruce Liang, dean of UConn School of Medicine and director of the Pat and Jim Calhoun Cardiology Center at UConn Health.

“He has a remarkable ability to link basic science with important clinical problems, and his work holds a great deal of promise for developing new treatments for patients with cardiomyopathy. I wish there were two or three Travis Hinsons.”


Hinson’s beating heart tissue. Provided by Dr. Travis Hinson

UConn to Establish Genetic Counseling Master’s Program

illustration of genetic material


UConn has awarded $300,174 to seed a new Professional Science Master’s (PSM) Program in Genetics, Genomics, and Counseling. Graduates of the program will work with doctors and patients to interpret the results of genetic testing, a rapidly growing area in health care that needs more trained personnel. Once accredited, the program will be the first in Connecticut and the only one in New England at a public institution.

“Our students are anxious. They want to do this,” says Judy Brown, director of the diagnostic genetic sciences program in UConn’s College of Agriculture, Health, and Natural Resources’ allied health sciences department. Brown is spearheading the push for the program along with Institute for Systems Genomics director Marc Lalande and UConn Health genetics counselor Ginger Nichols.

Once accredited, the program will be the first in Connecticut and the only one in New England at a public institution.

New genetics research and techniques have made it easy for the average person to get a read on their genome, or whole genetic code. Celebrities, including Angelina Jolie, who have openly discussed their genetic risk factors for cancer, and companies, such as 23andMe, that will provide a basic genetic report for a fee, have increased demand enormously. But there’s a lack of trained people who can accurately interpret and explain the results of genetic tests, limiting the potential benefits.

Ideally, a doctor who identifies “red flags” within a patient’s family history that indicate increased genetic risk for disease will call in a genetic counselor. The counselor can take a detailed family history, determine the appropriateness of genetic testing, discuss benefits and limitations of testing to help the patient make an informed decision, and advise the patient on who else in their family might be at risk. If testing occurs and results indicate high genetic risk, counselors can help discuss the options to mitigate that risk.

As a result, genetic counseling is the fourth-fastest-growing occupation in Connecticut. Many UConn allied health sciences majors would like to enter the profession, Brown says, but there are only 34 training programs in the U.S., and the acceptance rate is below 8 percent.

Institutions including Connecticut Children’s Medical Center and The Jackson Laboratory (JAX) have expressed support for the program. Kate Reed, director of the Clinical and Continuing Education Program at JAX, says JAX would combine its experience translating genetic discoveries into clinical applications with UConn’s experience in this area to give the PSM graduates a solid understanding of the research behind clinical treatments.

The exact roles of JAX, Connecticut Children’s, and the other institutions who support the new PSM have not yet been defined. The program’s curriculum first needs to be approved and accredited. The first students are expected to start the program in fall 2018.

Honor Roll – Spring 2016

UConn John Dempsey Hospital earned an ‘A’ in patient safety for fall 2015 from premier nonprofit hospital safety advocate The Leapfrog Group.


Dr. Robert L. Trestman is a co-recipient of the 2016 Manfred S. Guttmacher Award from the American Psychiatric Association and the American Academy of Psychiatry and the Law (AAPL) for his outstanding contributions to the literature of forensic psychiatry.


Dr. Pamela Moore was named Best Doctor in the Willimantic Chronicle’s 2015 Readers’ Choice Awards.


The UConn School of Dental Medicine was named winner of the 2016 William J. Gies Award for Outstanding Achievement by an Academic Dental Institution.


Reinhard C. Laubenbacher, Ph.D., of UConn Health and The Jackson Laboratory (JAX) for Genomic Medicine has been named a Fellow of the American Association for the Advancement of Science (AAAS) and co-editor of the Bulletin of Mathematical Biology.


Dr. Bruce Strober and Dr. Jane Grant-Kels were honored with Presidential Citations by the American Academy of Dermatology (AAD) at its annual meeting in Washington, D.C. on March 3.