Precision Medicine

Curators Versus Cancer

By Kim Krieger | Illustrations by Kailey Whitman

illustration of scientist look over hundreds of books

A special team of medical literature experts are on the hunt for cancer’s kryptonite, one mutation at a time.


If the genetic code is like a book, then a mutation is like a typo. Some typos are meaningless. Others have such dramatic consequences for a book, or a life, that the error alone could have an entire novel written about it.

Cancer mutations are like that. As oncology moves toward precision medicine — the idea that if we knew exactly which genetic mutations make a particular cancer tick, we could pick exactly the right treatments — oncologists have to keep up with an ever-expanding library of mutations and the drugs that might foil them. The number of cancer research papers published increases every year; there were about 35,000 published in 2015 just in the U.S. It’s far more than any one person can keep up with.

In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published.

A new collaboration between UConn Health and The Jackson Laboratory (JAX) hopes to help oncologists find the right treatments by keeping up with research for them — and using the institutions’ combined expertise in cancer treatment, molecular biology, and genetics to improve patient outcomes for cancers that currently don’t have good treatments. In the same way that a university has research librarians who keep up with the literature in specific fields, JAX has experts who keep up with cancer gene and drug research, even studies that are ongoing and not yet published. JAX already successfully connects these experts with doctors in the Maine Cancer Genomics Initiative, a philanthropy-funded statewide precision medicine program. UConn Health and JAX hope to expand the concept and demonstrate its feasibility more widely.

A UConn Health researcher holds a tumor sample.

A UConn Health researcher holds a tumor sample. Kristin Wallace

Bull’s Eye Treatment

Imagine that a patient has surgery or a needle biopsy to diagnose a tumor. It’s a particularly ugly tumor, the surgeon, oncologist, and pathologist all agree. Invasive, spreading, and perhaps this isn’t the first time this patient has had to come in for cancer surgery. The tumor is sampled and sent for genetic testing. In about two weeks, the results come back: there are three genetic variants in the tumor that might be drug targets.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor. “The goal is to define the optimal treatment regimen for each individual patient” who may not have good options otherwise, says Dr. Ketan R. Bulsara, chief of neurosurgery at UConn Health and one of the principal investigators on the project.

At UConn Health, oncologists can send portions of particularly malignant tumors to a team at the JAX Clinical Laboratory. JAX sends back a report with information the oncologist can use to pick a drug regimen with the best chance to shrink that ugly tumor.

The report is intended to be a standalone reference an oncologist can use to inform a treatment plan. But if the oncologist is unfamiliar with one of the mutations identified in the report or just wants more information, they can request that a genomic tumor board be convened. The board is composed of surgeons, pathologists, and molecular oncologists who act as external advisors, sharing their opinions with the oncologist. In just 15 minutes, the oncologist can get a wealth of expert opinion to combine with their own expertise and judgment. In the end, the oncologist and patient decide on the best treatment, based on all the available information.

“In a multidisciplinary fashion, doctors and scientists work hand in hand in this with one common goal: identify the best treatment regimen for that particular patient’s pathology,” Bulsara says.
The focus is always on the patient. But behind the scenes, there’s an entire team of researchers whose work goes into the genetic tumor report. Scientists at JAX Clinical Laboratory sequence the tumor’s genetic code and report information on more than 200 cancer-related genes. The genes were picked because they are associated with both malignancy and potential drug treatments. Any mutations or variants in these genes might be a clue to the cancer’s weakness. Or a red herring.

“A typical tumor might have 2,000 mutations. Not all of them really matter,” says Andrey Antov, the program director for the Maine Cancer Genome Initiative at JAX. Finding the key mutations that matter, the two or ten or twenty that could possibly inform treatment and a better outcome for the patient, is the job of the clinical genomic curators.

Personal Librarians

The clinical genomic curators are specialists in fields such as molecular oncology and oncological pharmacology. They’re dedicated to keeping up with the literature on cancer genes and the drugs that target them. More and more of these drug-gene connections are being discovered every day. It’s exciting, but the sheer volume of papers can be overwhelming. Navigating that ocean of scientific papers is the medical curators’ full-time job. They’re like librarians curating a Boston Public Library–size collection of genes and drugs with no cross references in the card catalog and only an imperfect search function. The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

Each mutation identified by the genetic panel might require 10 to 20 scientific publications to understand. Once the curators have a handle on the variants’ significance, the clinical laboratory decides which two or three should be described in the report to the oncologist.

illustration of books in a library cart

Sifting the information down to something relevant and digestible is the ultimate goal.

“Today, all this information is disorganized and may not all be in the oncologist’s head. We’re trying to bring it together,” says Jens Rueter, medical director for the Maine Cancer Genome Initiative.

The ideal outcome of a tumor genetic analysis would be to identify a mutation such as the HER2 gene that is turned on in the most aggressive breast cancers. HER2 is responsible for the cancer’s malignancy. But it’s also the cancer’s Achilles’ heel. Once drugs were developed to block the HER2 protein, survival rates climbed sharply.

The goal of the Maine Cancer Genomics Initiative is to enable oncologists to identify other drug-gene connections as potent as the ones found for HER2. Although more and more of these drug-gene connections are being discovered, it remains difficult to provide a patient with access to these drugs. Many of them are only available if a patient participates in a clinical trial. And often, there are barriers to accessing clinical trials, and getting drugs off-label is the only way to get patients to treatments. That’s another benefit that Antov, Bulsara, and Rueter hope UConn Health’s collaboration with JAX will bring.

Positive Outcomes

Ultimately, the researchers hope to demonstrate that this approach leads to better outcomes for patients. During the past year more than 350 patients and 70 oncology practitioners (more than 80 percent of the Maine oncology community) enrolled in the Maine Cancer Genomics Initiative study protocol. A few patients have already been offered a targeted treatment through a trial or a compassionate drug access program as a result of enrollment in the program. And Maine health care professionals have logged more than 1,200 certified education hours through 35 genomic tumor boards, online modules, and annual forums held by JAX.

So far, five patients have done this at UConn Health within the last two months. Generous donors have given enough to fund 20 more.

The hope is that just as a good librarian’s knowledge of the subject matter can unearth texts a researcher would never otherwise find, a medical curator’s grasp of oncological genetics and pharmacology can identify potential treatments that would otherwise remain obscure.

“We hope to get funding for at least 100 patients to show the feasibility of this approach,” Bulsara says. “We want to show we can do this reliably, and that it reliably improves patient care.”

UConn Health already has the infrastructure to do this, in particular a biorepository for tumors set up by Neag Cancer Center Director Dr. Pramod Srivastava and pathologist Dr. Melinda Sanders. With that foundation and support from UConn medical school Dean Dr. Bruce Liang and UConn Health CEO Dr. Andrew Agwunobi, the program was piloted in the Department of Surgery by Bulsara, its chief of neurosurgery, with support from Department of Surgery Chairman Dr. David McFadden, hematology and oncology chief Dr. Susan Tannenbaum, anatomical pathology chief Dr. Qian Wu, and JAX Clinical Laboratory Director Honey Reddi.

If the UConn Health–JAX initiative does prove its feasibility, the approach will continue to spread and become a standard of care.

More oncologists could have access to the library of knowledge and advice of a genetic tumor board, and more cancer patients could benefit from longer, healthier lives.

Tumor samples are housed in UConn Health's research biorepository.

Tumor samples are housed in UConn Health’s research biorepository. Kristin Wallace

Matching Medicine to the MS Patient

UConn Health researchers have discovered why drugs for an aggressive form of multiple sclerosis work in the lab but fail in real patients: Each primary progressive multiple sclerosis patient has uniquely defective stem cells, perhaps making the debilitating illness a prime candidate for precision medicine.

By Kim Krieger

Illustration by Katie Carey

illustration of stylized silhouettes holding their perfectly matched medication


At first, Christine Derwitsch thought she was just really out of shape. She and her husband had gone out for a hike. They went hiking often, but this time, by the summit of the first hill she had to sit down. Her legs were so heavy.

She laughed it off, saying she’d been spending too much time sitting at a desk. But over the next few months, walking became harder and harder. And gradually, Derwitsch realized something was wrong.

“I went on Facebook, and I looked at what I’d been able to do before — hiking, my sister’s wedding — and I couldn’t do that anymore. I thought, ‘This isn’t right.’”

It took her almost a year, but 29-year-old Derwitsch was finally referred to a neurologist at UConn Health, who diagnosed her with primary progressive multiple sclerosis (PPMS). It was a relief to finally understand what was happening to her legs, but the news wasn’t good; there were very few treatment options available.

Most cases of multiple sclerosis have a pattern of illness and then remission: symptoms flare up, then go away, then flare up again. There are effective drugs that help patients extend the periods of remission, and someone diagnosed with MS in his or her 20s may live comfortably for decades.

But PPMS is a different story.

“It’s a harder diagnosis to make because there are no attacks,” says Dr. Matthew Tremblay, Derwitsch’s neurologist at UConn Health, who specializes in treating MS.

And the same thing that makes PPMS harder to diagnose makes it harder to treat.

Most drugs for MS are designed to prevent relapses by suppressing the immune system. But PPMS patients don’t have relapses. To help them, a drug would need to help them regrow myelin, the insulation around our nerves that people with multiple sclerosis can’t reliably repair. Doctors seeking this kind of drug for PPMS keep chasing a mirage.

It’s like you bring in the National Guard to stop a riot, and [instead] they all sit down and start having lunch.

For PPMS, many researchers look for possible treatments among medications that have already been approved for other illnesses. That way they can go right from lab to patient if they show promise. And so far many medications have shown promise — in the lab. But no matter how well a compound works in the lab, it never seems to help many people in the clinic. It’s a conundrum that frustrates both doctors and patients.

But researchers at UConn Health now think they know why the drugs coming out of labs are duds. And they have an idea of how to fix it.

In a new study, UConn Health neuroscientist Stephen Crocker and his colleagues collected blood cells from patients with PPMS, as well as the patients’ siblings or spouses. Then in the lab, they “reprogrammed” the cells and turned them into neuroprogenitor stem cells.

Stem cells can turn into any type of cell in the body; neuroprogenitor stem cells are found only in the brain and specialize in turning into new brain and nerve tissue, such as the oligodendrocyte cells that re-myelinate nerves. These neuroprogenitor stem cells are known to protect the brain from injury, but this recent study was the first to ask whether these stem cells from someone with PPMS had the same ability to protect the brain as those from someone without the disease.


Christine Derwitsch

While primary progressive multiple sclerosis is harder to treat than typical MS, UConn Health researchers have found why drugs that work in the lab fail on real patients with PPMS, like Christine Derwitsch (pictured). Photo: Tina Encarnacion


To explore this question, the researchers first tried adding the stem cells to brain tissues in animals with damage similar to PPMS. Stem cells from the healthy relatives and spouses started repairing the damaged areas. But the PPMS stem cells didn’t do anything.

“It’s like you bring in the National Guard to stop a riot, and [instead] they all sit down and start having lunch,” Crocker says.

Crocker and his colleagues then tested how these stem cells were different by growing them in dishes in the lab. They collected the soup that the cells grew in, called conditioning media, and tested how this affected other cells grown in it afterward. The stem cells had left behind chemicals and proteins in the conditioned media, little messages that tell other cells that come later what they need to do.

Oligodendrocyte cells grown to maturity in media conditioned by healthy stem cells matured into nice, big oligodendrocytes with no problems. But the cells added to dishes conditioned by PPMS stem cells didn’t mature at all. Something about the neural stem cells from PPMS patients was messing up the young oligodendrocytes, leading them astray.

So members of Crocker’s research team next tested some drug candidates for PPMS and added them to the young oligodendrocytes. The drugs absolutely helped the young oligodendrocytes mature when they were growing in media conditioned by stem cells from healthy people. But the same drugs didn’t help the young oligodendrocytes when they were grown in media conditioned by diseased stem cells. In those cases, the cells responded differently every time.

As Tolstoy might have said, healthy stem cells are all alike, but stem cells with PPMS are all unhealthy in their own way. It might appear to be the same disease from the symptoms, but each patient’s PPMS seems to be caused by a different problem with that specific patient’s cells.

But that means that doctors may be able to screen drugs for brain repair on a patient-by-patient basis, Crocker says. He and his colleagues published their findings in the Feb. 1 issue of Experimental Neurology.

Tremblay has begun collaborating with Crocker as they plan the next steps to this research, looking to recruit patients for future studies.

And in the lab they’ve already found that some drugs that have been dismissed as ineffective when tested using more typical techniques may have the potential to work very well for certain PPMS patients — patients like Derwitsch.

Derwitsch hasn’t participated in the study yet, but it’s exactly patients like her who could benefit from this personalized approach.

In the meantime, she is staying mobile and positive. She credits Tremblay for getting her insurance to cover her treatment — he actually got on the phone with her insurance company, she says.

“Dr. Tremblay has so much knowledge about MS, but also a dedication and passion. Every time I have a question, he has an answer.”