UConn Health is the first institution in New England to offer patients this pioneering, more precise, robotic-guided spine surgery.

PRECISE INSTRUMENTS:
Better Spine Surgery With Robots

UConn Health is the first institution in New England to offer patients this pioneering, more precise, robotic-guided spine surgery. 9
Dr. Naomi Rothfield: A Half-Century of Progress at UConn Health

When Dr. Naomi Rothfield arrived at the new University of Connecticut School of Medicine in summer 1968 as a young rheumatologist, UConn Health's Farmington campus did not yet exist. The autoimmune diseases she studied and treated, like lupus and scleroderma, were often fatal within two years of diagnosis. She had gone through medical school at New York University in a class with only six women and 125 men.

In the nearly 50 years since Rothfield was hired as a founding faculty member of the medical school, much has changed. UConn Health's physical presence includes several state-of-the-art new buildings on the 106-acre Farmington site, as well as clinics throughout the state. Lupus and scleroderma are no longer death sentences, but treatable illnesses (Rothfield still sees a lupus patient who first came to her in 1966). And today, women make up just about half of medical school students nationwide.

But it wasn’t just the changes around her that made her career monumental — it was the changes Rothfield, 87, effected herself before her retirement this March.

“Dr. Rothfield is a legend in the field of medicine,” says Dr. Augustus D. Mazzocca, chairman of the Department of Orthopaedic Surgery and director of the Musculoskeletal Institute at UConn Health. “She is a pioneer who always put patients and education before all else, an example for all people involved in health care.”

Despite numerous honors and achievements, the ever-modest Rothfield doesn’t see it that way. But just let her CV speak for her: She built from the ground up UConn’s Division of Rheumatic Diseases as its chief from 1973 to 1999, training dozens of leading rheumatologists worldwide (she does admit that’s her proudest accomplishment). She brought in millions in grant funding from the U.S. Department of Veterans Affairs and the National Institutes of Health to conduct trailblazing research in her field, deepening the understanding of rheumatic diseases through over 150 published papers and 40 book chapters. And in the 1970s, she fought for equal pay for women at the University.

Her love for teaching and interacting with her longtime patients kept her going for so many years, she says. But now it’s time to visit her four children and six grandchildren, exercise, and travel with her husband, Dr. Lawrence Rothfield.

“I stayed at UConn because I was happy here,” Rothfield says. “It’s time to retire and enjoy myself. I have a few other things I want to do.”

Dr. Naomi Rothfield built from the ground up UConn’s Division of Rheumatic Diseases as its chief from 1973 to 1999, training dozens of leading rheumatologists worldwide.

Precise Instruments: Better Spine Surgery With Robots

UConn Health is the first institution in all of New England to offer patients the pioneering and more precise spine surgery assisted by the new Mazor Robotics Renaissance Guidance System.

Close at Heart

Radiation treatment for breast cancer can inadvertently graze the heart, leading to damage and disease years later. UConn doctors are working to change that.

Individualized: UConn Health’s Personalized Ovarian Cancer Vaccine Enters Clinical Trials

Ovarian cancer relapses are deadly. UConn Health is testing its pioneering vaccine that could prevent them.
Laurencin’s HEAL Project aims to regenerate a human knee within seven years, and an entire human limb within 15 years.

The project is supported by Laurencin’s recent $4 million Pioneer Award from the National Institutes of Health, as well as his grant award from the National Science Foundation for Emerging Frontiers in Research and Innovation. Important support also comes from The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences.

— Dr. Cato T. Laurencin

Honors Pour in For Leading UConn Surgeon-Scientist

On the heels of UConn announcing The HEAL Project, an international grand research challenge aimed at regenerating an entire human limb, Dr. Cato T. Laurencin has learned in recent months that he’ll be honored this year by several prestigious organizations and even the president of the United States.

Laurencin’s laboratory research successes include the growth of bone and knee ligaments. Laurencin is a leading surgeon-scientist in orthopaedic surgery, engineering, and materials science, and a pioneer in the field of regenerative engineering.

Receiving the Medal of Technology and Innovation is a tribute to the hard work that has taken place by our great team over the past 25 years. It inspires me to keep working hard to advance science breakthroughs in regenerative engineering.

— Dr. Cato T. Laurencin
at UConn Health, which Laurencin founded and directs.

“The launch of the HEAL Project is a transformative moment for science and medicine,” said Laurencin in November. “This is the first international effort ever for knee and limb engineering.”

In early December, it was announced that Laurencin would receive the 2016 Founders Award, the highest honor from The Society of Biomaterials. He will be honored for his landmark and long-term contributions to the field of biomaterials science at the 2016 World Biomaterials Congress in Montreal, Canada on May 18. At that same meeting, the Society for Biomaterials will introduce the Cato T. Laurencin, MD, Ph.D. Travel Fellowship, an endowed fellowship named in Laurencin’s honor.

A few weeks later, the White House said Laurencin would receive a National Medal of Technology and Innovation, the nation’s highest honor for technological achievement that is bestowed by the president on America’s leading innovators. This was the third time Laurencin received White House honors.

“I am honored to be receiving the highest award in our nation for innovative technological achievement and scientific excellence from our great country,” said Laurencin.

WHITE HOUSE HONORS

Dr. Cato Laurencin has received White House honors three times. In 1996, he was among the recipients of the Presidential Faculty Fellow Award from President Bill Clinton for his work bridging engineering and medicine. In 2008, he received the Presidential Award for Excellence in Science, Math, and Engineering Mentoring from President Barack Obama.

“Receiving the Medal of Technology and Innovation is a tribute to the hard work that has taken place by our great team over the past 25 years. It inspires me to keep working hard to advance science breakthroughs in regenerative engineering for future therapies for my patients.”

And in the same month, Laurencin was named a foreign member of the Chinese Academy of Engineering. An election for life, Laurencin carries the title of Academician in China.

Laurencin is the eighth professor in UConn history to earn the highest faculty title, University Professor. He is also the Albert and Willda Van Dusen Distinguished Professor of Orthopaedic Surgery at UConn Health, and the founder of the Institute for Regenerative Engineering. Laurencin is an elected member of the National Academy of Medicine and the National Academy of Engineering.

LAB NOTES

STUDYING DIRTY DIAPERS FOR CLUES ABOUT PREMATURE BABIES

A team of UConn researchers is working on minimizing stress for premature babies by analyzing one of the most extensive sources of information these patients provide: poop. Fully one in nine babies born in the U.S. arrive prematurely, and the measures necessary to keep them alive are numerous, often painful, and may have long-term effects, including lower IQs and neurodevelopmental challenges. In an ongoing study by nursing professor Xiaomei Cong and microbiologist Joerg Graf, preemies’ fecal samples are collected to study each patient’s microbiome. The researchers chart the patterns in the gut microbiome and compare them to the babies’ daily procedures, medications, feeding, and parental contact, looking for correlations between microbiome dynamics and babies’ outcomes.

Get the full story at bit.ly/uconnpreamies

RESEARCHERS PINPOINT BONE DISEASE-CAUSING GENE

Fragile bones are usually an old person’s affliction, but sometimes children are born with them. Haplo-Cheney is a particularly terrible form of inherited bone disease, in which sufferers’ bones begin to soften and fracture early, often in childhood. Now, a team of researchers led by Dr. Ernesto Canalis, director of the Center for Skeletal Research at UConn Health, has shown in mice that a specific gene can cause the disease. Overabundant bone-absorbing cells may be causing the characteristic bone loss, the researchers reported in the Jan. 22 issue of *The Journal of Biological Chemistry*. The researchers hope to find a potential treatment, perhaps by slowing the development or activity of the cells that absorb old bone.

Get the full story at bit.ly/uconnbones

RESEARCHERS UP ONE IN ANTIMICROBIAL CAT-AND-MOUSE GAME

UConn pathobiologists have discovered that vibrio bacteria have a special protein that sounds the alarm when it detects antibiotics in the beta-lactams family, such as penicillins and cephalosporins. The protein, called histidine kinase, alerts the bacteria to produce an antibiotic-fighting enzyme called beta-lactamase. The researchers reported their discovery in the Feb. 1 edition of *Proceedings of the National Academy of Sciences*. They don’t yet know the mechanism for how the protein senses antibiotics, but now that they know it exists, they will work on a way to disable it by developing drugs that can desensitize the bacteria — so that they don’t respond to the alarm.

Get the full story at bit.ly/betalactams

DIAGNOSE SICKLE CELL DISEASE WITH YOUR PHONE

A few drops of blood inserted into a tube on a smartphone could be all that’s necessary to diagnose sickle cell disease, UConn biomedical engineers reported in *Scientific Reports* on Oct. 22. A hereditary disease, sickle cell affects people across Africa and the U.S. If undiagnosed, it can cause silent strokes and life-long damage, but current techniques for screening newborns are cumbersome and require specialized training. UConn’s Stephanie Knowlton and Savas Tasoglu, working with colleagues at Yale, MIT, and Harvard, have invented a sickle cell testing device that can be plugged into an Android phone and easily interpreted by a non-specialist. They’re now working on expanding the device to work for other diseases.

Get the full story at bit.ly/uconnsickle
Melanoma Patients Benefit from New Immunoherapy Drug

Patients with advanced melanoma are benefiting from the same drug credited recently with the disappearance of the disease in former President Jimmy Carter.

Physicians with UConn Health’s Carole and Ray Neag Comprehensive Cancer Center are successfully boosting the immune system of some of their advanced melanoma patients with a new, promising immunotherapy tool called Keytruda (pembrolizumab).

The drug was granted accelerated FDA approval in September 2014 for the treatment of melanoma patients who no longer respond to other drug treatments and are not candidates for surgery.

Melanoma is one of the deadliest types of skin cancer. If not detected early and removed from the skin, it can spread deep into the skin and to the body’s other organs, such as the lungs, liver, and brain. It is often fatal.

“Melanoma affects the young and the old, and its incidence is on the rise,” says Dr. Upendra P. Hegde, associate professor in the Department of Medicine, and chief medical oncologist for melanoma and cutaneous oncology and head and neck cancer/oral oncology at UConn Health. More than 75,000 people are diagnosed with melanoma annually, and nearly 10,000 Americans die from it each year.

Hegde says melanoma spreads quickly because tumors evade the immune system’s attack by expressing proteins called PD-L1 and PD-L2 (program death ligand 1 and 2), compromising the ability of a person’s T-cells to fight cancer.

However, Keytruda boosts a patient’s immune system, helping it fight back and preventing the cancer-fighting cells from becoming exhausted.

“Keytruda is the first PD-1 inhibitor drug that is allowing us to shrink the melanoma tumors in up to 35 percent of our UConn Health patients,” says Hegde.

Since not all advanced melanoma patients respond to current available drug therapies including Keytruda, UConn Health researchers are participating in two clinical trials that combine Keytruda with other therapy options. One, called INCYTE and led by principal investigator Dr. Jeffrey Wasser, is testing the efficacy of combining Keytruda with another immunotherapy drug known as an IDO1 inhibitor (INCB024360) to see if together they can enhance the immune system’s response to advanced melanoma and other solid-tumor cancers. A second trial is testing the possible benefits of Keytruda with standard chemotherapy for relapsed head and neck cancer.

UConn Health’s multidisciplinary melanoma team includes Dr. Jane Grant-Kels and Dr. Philip Kerr of dermatology, Hegde of medical oncology, and Dr. Bruce Brenner, a surgeon who specializes in melanoma, among others.
For 30 years, Frank Ditaranto worked in the construction field. But a sudden back injury changed that, leaving Ditaranto unable to carry on his normal life.

“Two years ago, my back went out and it stayed that way,” says Ditaranto, a 50-year-old Terryville, Conn. resident. “Ever since, I have been bent over like I was 90, with shooting pain down my left leg to my toes, and I was unable to even straighten my leg.”

Daily life and even walking became difficult for Ditaranto. He tried pain medicine, physical therapy, aqua therapy, and epidurals, but there was no relief in sight — until now.

On Jan. 7, Dr. Isaac Moss, assistant professor of orthopaedic surgery and neurosurgery at the Comprehensive Spine Center at the UConn Musculoskeletal Institute, was the first surgeon in New England to use the new Mazor Robotics Renaissance technology to assist him during spine surgery. Ditaranto was his first patient.

Dr. Isaac Moss, assistant professor in the Department of Orthopaedic Surgery — plan to use the system.

“Using this advanced technology puts UConn Health at the forefront of spinal surgery,” Moss says. “This technology allows us to perform both traditional and minimally invasive spine surgeries more effectively and safely.”

Other potential benefits of the robotic guidance technology include smaller incisions, shorter operative times, shorter hospitalization and recovery, less pain for patients, and less exposure to fluoroscopy X-ray radiation for both a patient and the surgical team.

Research shows that compared to freehand spine surgery, the robotic guidance technology can increase the accuracy of screws and other hardware placement by 1.5 mm. This increased accuracy may also reduce the potential for neurologic risks to patients, which may include future nerve pain, tingling, or tissue numbness.

Two other UConn Health surgeons in addition to Moss — Dr. Hillary Onyiuke, director of the Comprehensive Spine Center at the UConn Musculoskeletal Institute and chief of the Division of Neurosurgery, and Dr. Ryan Zengou, assistant professor in the Department of Surgery’s Division of Neurosurgery and the Department of Orthopaedic Surgery — plan to use the system.

“I look forward to using this technology to help patients with spinal pathology by performing complex procedures with optimal precision and the best outcomes possible,” Moss says.

To refer a patient to a UConn Health surgeon, call 860.679.5555.

Doctors of the UConn Musculoskeletal Institute’s Comprehensive Spine Center use the Mazor Robotics Renaissance Guidance System to perform spine surgery in January.
Getting radiation treatment for breast cancer can make you feel vulnerable. Sitting in a machine with radiation pointed directly at your chest, you have to trust that the doctor knows what she’s doing, that the X-rays are aimed right, that the machine is properly calibrated ... and then you just sit perfectly still. But what if you could have some control over the process?

Dr. Robert Dowsett, chief of UConn’s Division of Radiation Oncology, and colleagues in the Carole and Ray Neag Comprehensive Cancer Center are using a new technique to give breast cancer patients agency in their radiation treatments. And they’re taking better care of the patients’ hearts in the process.

Using the technique, called Deep Inspiration Breath Hold, patients can help control the accuracy and timing of their own radiation dose. The patient takes a breath of specific depth before the radiation machine turns on. Doing this correctly can increase the distance between the heart and the breast by a centimeter or two, lowering the amount of radiation hitting the heart by as much as 50 percent.

Jeryl Dickson, 62, of Manchester, Conn., was one of the first patients at UConn Health to use the technique, from late 2015 through Feb. 2. Her doctors, including Dowsett, prescribed a course of radiation therapy to make sure there were no lingering cancer cells remaining after a lumpectomy removed her breast cancer.

“I practiced deep breathing and breath holds prior to radiation treatment with the radiation oncology staff so I could feel what it would be like,” says Dickson.

Radiation treatment of breast cancer can be very effective, eradicating tumor cells hiding in the chest wall. But breast cancer survivors have a heightened risk of heart disease that shows itself years later. Ironically, the heart disease stems from the radiation that originally saved their lives. Radiation is a type of light, and like visible light, it has a tendency to reflect and scatter. Just as even the sharpest spotlight has blurred edges where it blends into shadow, even the best-aimed medical radiation beam occasionally scatters into tissue outside of the tumor it targets. Sometimes it hits the heart.

“We worry about heart attacks down the road, 10 to 15 years after radiation treatment of cancer in the chest. We also worry about inflammation on the outside of the heart in the short term. We don’t exactly know how the radiation damages the tissue, but it definitely seems to accelerate damage to blood vessels. It can also cause scarring and fibrosis damage,” says Dowsett.

But the distance between the heart and the chest wall varies from person to person. And a patient can intentionally increase the heart-chest wall distance by controlling her breathing using the Deep Inspiration Breath Hold.

To make the best use of the Deep Inspiration Breath Hold technique, Dowsett and his colleagues at UConn Health combine it with an optical scanning system supplied by C-RAD. The scanning system is essentially a computer with a camera that models the surface of the skin on the patient’s chest. It tracks the patient’s breathing, and coaches her to inhale just the right amount. As the patient, you wear virtual-reality goggles in which you see a bar graph showing your inhalation, with a box at the top. Your goal is to hit the box and then hold your breath for the 20 to 30 seconds it takes to complete the radiation treatment. Some patients can hold their breath that long; others can’t. It doesn’t matter, because if you exhale, or giggle, or cough, the system sees your chest move out of the perfect range and stops the radiation. It won’t restart until you get yourself back in position and inhale to just the right spot again.

“The deep breathing technique was not difficult at all,” says Dickson. “Honestly, I was more focused on my cancer, and heart health never entered my mind. But I am glad I put my trust in my doctors, and I never had any doubts.”

UConn Health is the only hospital using this technology in Central Connecticut. It’s a powerful, precise way to make sure the radiation beam gets the cancer, and to minimize the risk to other organs. Previously, “the area we treated inevitably ended up being bigger than the target (tumor) itself,” Dowsett says. “Now we’ve expanded this to abdominal targets such as the pancreas and adrenal lesions,” while sparing healthy surrounding organs.
INDIVIDUALIZED

UConn Health’s Personalized Ovarian Cancer Vaccine Enters Clinical Trials

BY LAUREN WOODS

Ovarian cancer relapses are deadly. UConn Health is testing its pioneering vaccine that could prevent them.

The experimental vaccine, named OncoImmunome, is administered as a simple injection in an outpatient setting. It works by boosting the patient’s immune response to enable it to destroy ovarian cancer cells, so that they do not resurface.

“This is the first vaccine of its kind developed for women diagnosed with advanced ovarian cancer,” says Dr. Pramod K. Srivastava, the vaccine’s developer, who is a leading cancer immunotherapy expert and director of the Carole and Ray Neag Comprehensive Cancer Center at UConn Health. “The personalized vaccine is specifically created using a patient's own genomics information to prevent an often life-threatening recurrence of the disease and extend survival.”

There is no early-screening test for ovarian cancer. When a woman with the disease starts to actually experience non-specific abdominal symptoms such as bloating, the disease has often already advanced to stage III or stage IV cancer. Further, there is no effective long-term treatment for ovarian cancer. Even after a woman is successfully treated with traditional surgery and chemotherapy, the disease has a very high recurrence rate within just two years. Tragically, most women die within five years of their diagnosis.

But Srivastava believes that appropriate immunotherapy may stop an ovarian cancer diagnosis from becoming a death sentence. “There is a huge need for a therapy to actually prevent recurrence in these women and I believe our approach to a vaccine may be just the tool to do it,” says Srivastava.

The individualized vaccine is created using samples of a patient’s own DNA from both her unhealthy cancer cells and her healthy blood cells. Over a period of about two weeks, scientists sequence and cross-reference the entire DNA from both sources to pinpoint the most important genetic differences. These genetic differences constitute the ID card, or fingerprint, of cancer.
In October 2014, Srivastava published a study showing that his promising approach to cancer vaccines is effective in reducing tumor growth and in preventing cancer progression in mouse models. Based primarily on that work, the FDA approved testing of the experimental therapy in a human clinical trial.

“Of cancer vaccines is effective in reducing tumor growth and in preventing cancer progression in mouse models. Based primarily on that work, the FDA approved testing of the experimental therapy in a human clinical trial.

Dr. Angela Kueck, assistant professor of gynecological oncology, and Dr. Jeffrey Wasser, assistant professor of medicine at the Carole and Ray Neag Comprehensive Cancer Center, are the principal and co-investigators of this study.

“We have received over a hundred messages from women in Connecticut and from around the world, in the hope of participating in our study,” says Srivastava.

He adds, “The most meaningful part of my life, at this time, is to serve. I hope that our results a few years from now will show that our unique ovarian cancer vaccine can prevent recurrence of the disease and even extend survival.”

If the clinical trials are successful against ovarian cancer, Srivastava plans to expand testing of his vaccine to bladder cancer and other solid-tumor cancers.

“This first-ever genomics-driven personalized vaccine has the potential to dramatically change how we treat cancer,” says Srivastava.

Dr. Pramod Srivastava Honored For Groundbreaking Cancer Research

Dr. Pramod K. Srivastava, director of the Carole and Ray Neag Comprehensive Cancer Center, will be honored at the 7th Annual White Coat Gala to benefit UConn Health on April 16 at the Connecticut Convention Center in Hartford.

The annual event honors the men and women in “white coats” who are breaking new ground in the lab and providing exceptional patient care.

Srivastava will receive the 2016 Carole and Ray Neag Medal of Honor for his contributions to the fight against cancer, along with co-honoree Bess Economos, co-founder of Lea’s Foundation for Leukemia Research.

“I am honored to be recognized by UConn,” says Srivastava. “This award is particularly meaningful to me, personally, because it bears the names of Carole and Ray Neag, whose selfless service makes a difference in the lives of thousands of patients facing cancer as well as other diseases.”

Highly accomplished in both basic and translational research, Srivastava is leading the world’s first clinical trial for an ovarian cancer vaccine using patients’ own genomics, or DNA. He has earned international acclaim for his groundbreaking work in the immunological function of heat shock proteins and in cancer immunotherapy, is widely published in scholarly journals, and serves on the editorial boards for several major journals in immunology.

In addition, Srivastava in December was elected a Fellow of the National Academy of Inventors (NAI) for his long-standing inventions in the area of cancer immunotherapy, including his promising vaccine for difficult-to-treat ovarian cancer.

The White Coat Gala, supported by founding title sponsors Richard and Jane Lublin and other top sponsors, has raised more than $3.5 million for UConn Health. The event celebrates UConn Health’s eminent physicians, dentists, and researchers who are translating discoveries made in the lab into lifesaving advances.
How Should Medical Providers Prepare for Value-Based Care?

Q&A with Dr. Andrew Agwunobi, chief executive officer & executive vice president for health affairs at UConn Health

Value-based care means that future health care payments to medical providers by patients, insurance companies, and governmental agencies will most likely be formulated using a combination of key high-quality care metrics of each hospital’s or doctor’s office’s performance, along with an average of state or national health care service costs.

Medicare has indicated that by 2018 it will move to a value-based payment model. It is anticipated that commercial payers such as insurance companies will follow suit. Failure to provide value-based care in the future will potentially result in decreased payer reimbursements, financial penalties by the Centers for Medicare & Medicaid Services (CMS), and a shrinking number of patients using a medical provider’s services.

Health care delivery is evolving faster than ever before. One major change for medical providers is that the business of health care is moving from the traditional model of paying for medical services to one where payments will be based on quality and costs. This new model, which sprung from the Affordable Care Act, is referred to as value-based care. UConn Health Journal sat down with UConn Health’s CEO to learn more.

What exactly is value-based care?

Value-based care means that future quality improvement initiatives, track them closely, and make sure key clinical quality metrics are measured and met. But they must also focus on improving the “value” of care, contemporarily defined as health outcomes achieved per dollar spent.

To meet these new expectations and to remain competitive, many health care providers across the nation have been joining or creating accountable care organizations (ACOs). An ACO is a voluntary collaboration of doctors, hospitals, and other health care providers who coordinate care and adhere to quality and efficiency standards in order to provide the best patient care at the most affordable cost possible.

How is UConn Health preparing for value-based care?

UConn Health recently completed a successful large-scale, aggressive cost and savings initiative that is yielding ongoing annual operating and financial efficiencies. Now to remain even more competitive and provide great care at the best cost, we are currently looking at creative affiliation opportunities. We are exploring joining one or more existing ACOs in Connecticut at a leadership level. Our goal is to increase patient access to health care, while improving quality of care and our patient outcomes, and reducing the costs of achieving such good outcomes for our patients.

As part of our efforts toward value-based care, this spring we will begin the implementation process for a new, integrated electronic medical record (EMR) system called Epic. This is a nationally recognized clinical documentation system with the functionality and the capability to integrate all of UConn Health’s patient information across clinical care locations, physician offices, and medical providers into one accessible database.

This EMR will allow the sharing and receiving of the latest medical history of patients being cared for both at UConn Health and at other institutions, while providing our clinicians, researchers, and educators with a state-of-the-art clinical platform to support their ongoing missions. This EMR endeavor will enhance high-quality and cost-effective health care delivery for our patients and people of our region, and will allow for increased population health management.

Only a Hospital this Advanced Can Contain All the Possibilities Tomorrow Holds.

It’s new from the ground up. And it’s going to surround the patients of Connecticut with even more possibilities. Introducing our new patient care tower. Paired with renovations to the existing UConn John Dempsey Hospital, it’s bringing a new level of advanced care to the people of our region. Rising eleven floors above our Farmington campus, the new tower has been engineered with the latest medical advancements to bring new comfort and efficiency to your patient experience. The new tower features 169 thoughtfully designed, private patient rooms and key patient areas such as the emergency department, surgery suite, and inpatient rehab space. It’s an incredible step forward for health care in Connecticut, and we’re proud that you can call it yours.

health.uconn.edu/opening
Dedicated Line for Referring Physicians
860.679.5555

- Make patient appointments
- Arrange patient admissions
- Engage in physician-to-physician consultation
- Obtain general information and assistance

QUALITY CARE, JUST A CLICK AWAY.

UConn Health’s brand-new website reflects our commitment to putting our patients’ needs first. Visit health.uconn.edu today.

Key features include:

- A patient-centric interface
- Easy access to search for a provider, request an appointment, or find a convenient location
- A robust listing of community resources, such as support groups, classes, and events